Home > Products > Pocket-Sized Instruments >

FluorPen FP 110

FluorPen is a portable, battery-powered fluorometer that enables quick and precise measurement of chlorophyll fluorescence parameters in the laboratory, greenhouse, or in the field. It can be effectively used for studying photosynthetic activity, stress detection, herbicide testing, or mutant screening.

Measured data are sequentially stored in the internal FluorPen memory. Data transfer to a PC is via USB or Bluetooth communication. Comprehensive FluorPen 1.0 software provides data transfer routines and many additional features for data presentation in tables and graphs.

Affordable price and straight-forward two-button operation makes the FluorPen a perfect tool for teaching photosynthesis. Because of its rapid measurement capability and large internal memory, the FluorPen is also an invaluable tool for large plant-screening programs.

FluorPen FP 110 measures:

  • FT - continuous fluorescence yield in non-actinic light. FTis equivalent to F0 if the leaf sample is dark-adapted.
  • QY - Photosystem II quantum yield. QY is equivalent to FV/FM in dark-adapted samples and to FV ' /FM ' in light-adapted samples. FV/FM is the most frequently used chlorophyll fluorescence parameter.
  • OJIP Analysis
    Application of chlorophyll fluorescence fast-transient analysis (OJIP) is a simple and non-invasive tool to monitor chloroplast function. Provided OJIP analysis is used as sensitive and reliable fast test for the functionality and vitality of photosynthetic system.
  • NPQ - Non-Photochemical Quenching
    Provided are two predefined NPQ protocols differing in the duration of light exposure and dark recovery phase as well as in the number of intervals between the pulses. It is typically used for quantification of photochemical and non-photochemical quenching in dark-adapted samples.
  • Light Curve
    There are three predefined Light Curve protocols based on pulse modulated fluorometry differing in number and duration of single light phases and light intensities. Light Curve protocols provide successive measurements of the sample photosynthesis under various light intensities of continuous illumination relating the rate of photosynthesis to photon flux density.
  • Photosynthesis research
  • Photosynthesis education
  • Plant & molecular biology
  • Agriculture
  • Large plant-screening programs
  • Biotechnology
  • FluorPen in the Field Experiment
    FluorPen in the Field Experiment
  • Different leaf-clips for gentle but firm sample holding:
  • Standard leaf-clip: suitable for experiments where short term dark adaptation is needed
    Standard Leaf-Clip
  • Detachable leaf-clips: suitable for experiments where long term dark adaptation is needed. They also allow simultaneous dark-adaptation of several leaves using several clips in situ under light, and then doing the readings one after another by attaching the device unit to each clip.
    Open Leaf-Clip

    Open Leaf-Clip
  • Customized sample holders: for instance, open leaf-clip suitable for measurements in ambient light (experiments where no dark adaptation is required); or specific clips for mosses, lichens and other experimental material.

    Open Leaf-Clip

    Open Leaf-Clip
  • Two predefined NPQ protocols differing in the duration of light exposure and dark recovery phase as well as in the number of intervals between the pulses
  • Typically used for quantification of photochemical and non-photochemical quenching in dark-adapted samples
  • NPQ 1 protocol: light duration 60s, 5 pulses; dark recovery duration 88s, 3 pulses
  • NPQ 2 protocol: light duration 200s, 10 pulses; dark recovery duration 390s, 7 pulses
  • NPQ Protocol Visualization
    NPQ Protocol Visualization
  • Three predefined protocols differing in number and duration of single light phases and light intensities
  • Based on pulse modulated fluorometry
  • Successive measurments of the sample photosynthesis under various light intensities of continuous illumination
  • Light response curve relating the rate of photosynthesis to photon flux density
  • Light Curve Protocol Visualization
    Light Curve Protocol Visualization
  • Bckg = background
  • F0: = F50µs; fluorescence intensity at 50 µs
  • FJ: = fluorescence intensity at j-step (at 2 ms)
  • Fi: = fluorescence intensity at i-step (at 60 ms)
  • FM: = maximal fluorescence intensity
  • FV: = FM - F0 (maximal variable fluorescence)
  • VJ = (FJ - F0) / (FM - F0)
  • Vi = (Fi - F0) / (FM - F0)
  • FM / F0
  • FV / F0
  • FV/ FM
  • M0 or (dV / dt)0 = TR0 / RC - ET0 / RC = 4 (F300 - F0) / (FM - F0)
  • Area = area between fluorescence curve and FM (background subtracted)
  • Fix Area = total area above the OJIP fluorescence transient - between F40µ and F1s(background subtracted)
  • SM = area / FM - F0 (multiple turn-over)
  • Ss = the smallest Sm turn-over (single turn-over)
  • N = SM . M0 . (1 / VJ) turn-over number QA
  • Phi_P0 = 1 - (F0 / FM (or FV / FM)
  • Psi_0 = 1 - VJ
  • Phi_E0 = (1 - F0 / FM)) . Psi_0
  • Phi_D0 = 1 - Phi_P0 - (F0 / FM)
  • Phi_Pav = Phi_P0 - (SM / tFM); tFM) = Time to reach FM (in ms)
  • ABS / RC = M0 . (1 / VJ) . (1 / Phi_P0)
  • TR0 / RC = M0 . (1 / VJ)
  • ET0 / RC = M0 . (1 / VJ) . Phi_0)
  • DI0 / RC = (ABS / RC) - (TR0 / RC)
  • OJIP Curve
Formulas Derived From:
R.J. Strasser, A. Srivastava and M. Tsimilli-Michael (2000): The fluorescence transient as a tool to characterize and screen photosynthetic samples. In: Probing Photosynthesis: Mechanism, Regulation and Adaptation (M. Yunus, U. Pathre and P. Mohanty, eds.), Taylor and Francis, UK, Chapter 25, pp 445-483.
  • FluorPen 1.0 software (Windows 2000, XP, or higher compatible*)
  • Bluetooth, USB or serial communication
  • Real-time and remote control functions
  • GPS mapping plug-in
  • Export to Microsoft Excel
  • FluorPen Software Window: OJIP Curves With Data Sheet
    FluorPen Software Window: OJIP Curves With Data Sheet
* Windows is a registered trademark of Microsoft Corporation
  • Measured/Calculated Parameters:
    F0 , FT , FM , FM ' , QY, OJIP*, NPQ 1,2*, and Light Curve 1,2,3*
  • Saturating Light:
    Adjustable from 0 to 100 % (up to 3,000 µmol(photon).m-2.s-1
  • Actinic Light:
    Adjustable from 0 to 100 % (up to 1,000 µmol(photon).m-2.s-1
  • Measuring Light:
    Adjustable from 0 to 100 % (up to 0.09 µmol(photon).m-2 per pulse)
  • Emitter:
    Blue 470 nm LED - optically filtered and precisely focused
  • Detector Wavelength Range:
    PIN photodiode with 667 to 750 nm bandpass filters
  • Optical Aperture Diameter:
    5 mm (standard and open leaf-clip); 6.5 mm (detachable leaf-clip)
  • FluorPen 1.0 Software:
    Windows 2000, XP, or higher**
  • Memory Capacity (16 Mb):
    Ft: up to 149,000 measurings
    QY: up to 95,000 measurings
    LC1: up to 3,000 measurings
    LC2: up to 3,500 measurings
    LC3: up to 2,600 measurings
    NPQ1: up to 800 measurings
    NPQ2: up to 500 measurings
    OJIP: up to 1,100 measurings
  • Display:
    2 x 8 characters LC display
  • Keypad:
    Sealed, 2-key tactile response
  • Keypad Escape Time:
    Turns off after 8 minutes of no use
  • Power Supply:
    Rechargeable Li-ion battery
  • Battery Life:
    100 hours typical with full operation
  • Low Battery Detection:
    Low battery indication displayed
  • Size:
    120 mm x 57 mm x 30 mm 4.7" x 2.2" x 1.2"
  • Weight:
    180 g, 6.5 oz
  • Sample Holder:
    Mechanical leaf clip - standard, open, or detachable
  • Operating Conditions:
    Temperature: 0 to 55 ºC; 32 to 130 ºF Relative humidity: 0 to 95 % (non-condensing)
  • Storage Conditions:
    Temperature: -10 to +60 ºC; 14 to +140 ºF Relative humidity: 0 to 95 % (non-condensing)
  • Warranty:
    1 year parts and labor
* Only in the FluorPen FP 100-MAX or the FluorPen models including protocol update
** Windows is a registered trademark of Microsoft Corporation
  • AJIGBOYE O. O., LU CH., MURCHIE E. H., ET AL. (2017). Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. Pesticide Biochemistry and Physiology. Volume 137. Pages 49-61. DOI: 10.1016/j.pestbp.2016.09.008
  • CHEKANOV К., SCHASTNAYA E., SOLOVCHENKO A., ET AL. (2017). Effects of CO2 enrichment on primary photochemistry, growth and astaxanthin accumulation in the chlorophyte Haematococcus pluvialis. Journal of Photochemistry and Photobiology B: Biology. Volume 171. DOI 10.1016/j.jphotobiol.2017.04.028
  • DUARTE B., PEDRO S., MARQUES J. C., ET AL. (2017). Zostera noltii development probing using chlorophyll a transient analysis (JIP-test) under field conditions: Integrating physiological insights into a photochemical stress index. Ecological Indicators. Volume 76. DOI: 10.1016/j.ecolind.2017.01.023
  • HERNÁNDEZ-CLEMENTE R., NORTH P.R.J., HORNERO A., ET AL. (2017). Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure, Remote Sensing of Environment,. Volume 193. Pages 165-179. DOI: 10.1016/j.rse.2017.02.012
  • LEE M. W., HUFFAKER A., CRIPPEN D., ET AL. (2017). Plant Elicitor Peptides Promote Plant Defenses against Nematodes in Soybean. Molecular Plant Pathology. DOI: 10.1111/mpp.12570
  • MARTEL A. B. AND QADERI M. M. (2017). Light quality and quantity regulate aerobic methane emissions from plants. Physiol Plantarum. Volume 159. DOI:10.1111/ppl.12514
  • PARADISO R., ARENA C., DE MICCO V., ET AL. (2017). Changes in Leaf Anatomical Traits Enhanced Photosynthetic Activity of Soybean Grown in Hydroponics with Plant Growth-Promoting Microorganisms. Frontiers in Plant Science. Volume 8. DOI: 10.3389/fpls.2017.00674
  • PTUSHENKO V.V., PTUSHENKO O.S., SAMOILOVA O.P., ET AL. (2017). The analysis of photoprotection and apparent non-photochemical quenching of chlorophyll fluorescence in Tradescantia leaves based on the rate of irradiance-induced changes in optical transparence. Biochemistry (Moscow).Volume 82. DOI: 10.1134/S0006297917010072
  • PUGLIELLI G., REDONDO-GÓMEZ S., GRATANI L., ET AL. (2017). Highlighting the differential role of leaf paraheliotropism in two Mediterranean Cistus species under drought stress and well-watered onditions. Journal of Plant Physiology. Volume 213. DOI: 10.1016/j.jplph.2017.02.015
  • PUSHKAREVA E., KVÍDEROVÁ J., ŠIMEK M.,ET AL. (2017). Nitrogen fixation and diurnal changes of photosynthetic activity in Arctic soil crusts at different development stage. European Journal of Soil Biology. Volume 79. Pages 21-30. DOI: 10.1016/j.ejsobi.2017.02.002
  • SELVARAJ, M.G., ISHIZAKI, T., VALENCIA, M., ET AL. (2017). Overexpression of an Arabidopsis thaliana galactinol synthase gene improves drought tolerance in transgenic rice and increased grain yield in the field. Plant Biotechnol. J. DOI: 10.1111/pbi.12731
  • SINGH M., KUSHWAHA K. B., SINGH, S., ET AL. (2017). Sulphur alters chromium (VI) toxicity in Solanum melongena seedlings: Role of sulphur assimilation and sulphur-containing antioxidants. Plant Physiology and Biochemistry. Volume 112. DOI: 10.1016/j.plaphy.2016.12.024
  • SINGH S. & PRASAD S. M. (2017) Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings under cadmium stress: Photosynthesis and nitrogen metabolism. Plant Growth Regul J. Volume 82. DOI:10.1007/s10725-017-0248-5
  • TRIPATHI D. K., MISHRA R. K., SINGH S., ET AL. (2017). Nitric Oxide Ameliorates Zinc Oxide Nanoparticles Phytotoxicity in Wheat Seedlings: Implication of the Ascorbate–Glutathione Cycle. Frontiers in Plant Science. Volume 8. DOI: 10.3389/fpls.2017.00001
  • TRIPATHI D. K., SINGH S., SINGH S., ET AL. (2017). Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiology and Biochemistry. Volume 110. DOI: 10.1016/j.plaphy.2016.06.015
  • TRIPATHI D. K., SINGH S., SINGH V. P., ET AL. (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings, Plant Physiology and Biochemistry. Volume 110. DOI: 10.1016/j.plaphy.2016.06.026
  • ZORIN B., PAL-NATH D., LUKYANOV A.,ET AL. (2017). Arachidonic acid is important for efficient use of light by the microalga lobosphaera incisa under chilling stress. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids. DOI 10.1016/j.bbalip.2017.04.008
  • AHMED S., ARIYARATNE M., PATEL J., ET AL. (2016). Altered expression of polyamine transporters reveals a role for spermidine in the timing of flowering and other developmental response pathways., Plant Science. DOI: 10.1016/j.plantsci.2016.12.002
  • AJIGBOYE O. O., BOUSQUET L., MURCHIE E. H. ET AL.(2016). Chlorophyll fluorescence parameters allow the rapid detectionand differentiation of plant responses in three different wheat pathosystems. Functional Plant Biology. Volume 43. Pages 356–369. DOI: 10.1071/FP15280
  • AJIGBOYE O.O., LU C., MURCHIE E. H. ET AL. (2016). Altered gene expression by sedaxane increases PSII efficiency, photosynthesis and growth and improves tolerance to drought in wheat seedlings. Pesticide Biochemistry and Physiology. DOI: 10.1016/j.pestbp.2016.09.008
  • ATHAR H. R., AMBREEN S., JAVED M. ET AL. (2016). Influence of sub-lethal crude oil concentration on growth, water relations and photosynthetic capacity of maize (Zea mays L.) plants. Environmental Science and Pollution Research. Volume 23, Issue 18, Pages 18320–18331. DOI: 10.1007/s11356-016-6976-7
  • BARÁNYIOVÁ I. AND KLEM K. (2016). Effect of application of growth regulators on the physiological and yield parameters of winter wheat under water deficit. Plant, Soil and Environment. Volume 62, No. 3, Pages 114–120. DOI: 10.17221/778/2015-PSE
  • CHEKANOV K., LUKYANOV A., BOUSSIBA S. ET AL. (2016). Modulation of photosynthetic activity and photoprotection in Haematococcus pluvialis cells during their conversion into haematocysts and back. Photosynthesis Research. Volume 128, Issue 3, Pages 313–323. DOI: 10.1007/s11120-016-0246-x
  • CHOI H. G., MOON B. Y. AND KANG N. J. (2016). Correlation between Strawberry (Fragaria ananassa Duch.) Productivity and Photosynthesis-Related Parameters under Various Growth Conditions. Frontiers in Plant Science. Volume 7. DOI: 10.3389/fpls.2016.01607
  • DUARTE B., CABRITA M. T., GAMEIRO C. ET AL. (2016). Disentangling the photochemical salinity tolerance in Aster tripolium L. : Connecting biophysical traits with changes in the fatty acid composition. Plant biology. DOI: 10.1111/plb.12517
  • ESTEBAN R., ROYO B., URARTE E. ET AL. (2016). Both Free Indole-3-Acetic Acid and Photosynthetic Performance are Important Players in the Response of Medicago truncatula to Urea and Ammonium Nutrition Under Axenic Conditions. Frontiers in Plant Science. Volume 7. DOI: 10.3389/fpls.2016.00140
  • FROSI G., BARROS V. A., OLIVEIRA M. T., ET AL. (2016). Symbiosis with AMF and leaf Pi supply increases water deficit tolerance of woody species from seasonal dry tropical forest. Journal of Plant Physiology. Volume 207. DOI: 10.1016/j.jplph.2016.11.002
  • HIDRI R., BAREA J.M., MAHMOUD O. MB. ET AL. (2016). Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions. Journal of Plant Physiology. Volume 201, Pages 28–41. DOI: 10.1016/j.jplph.2016.06.013
  • KANECHI M., MAEKAWA A., NISHIDA Y. AND MIYASHITA, E. (2016). Effects of pulsed lighting based light-emitting diodes on the growth and photosynthesis of lettuce leaves. Acta Hortic. Volume 1134. DOI: 10.17660/ActaHortic.2016.1134.28
  • LV DW., ZHU GR., ZHU D. ET AL. (2016). Proteomic and phosphoproteomic analysis reveals the response and defense mechanism in leaves of diploid wheat T. monococcum under salt stress and recovery. Journal of Proteomics. Volume 143, Pages 93–105. DOI: 10.1016/j.jprot.2016.04.013
  • LÓPEZ-LÓPEZ M., CALDERÓN R., GONZÁLEZ-DUGO V., ET L . (2016). Early Detection and Quantification of Almond Red Leaf Blotch Using High-Resolution Hyperspectral and Thermal Imagery. Remote Sens. Volume 8. DOI:10.3390/rs8040276
  • MALIK V.M., LOBO J.M., STEWART C. ET AL. (2016). Growth irradiance affects ureide accumulation and tolerance to photoinhibition in Eutrema salsugineum (Thellungiella salsuginea). Photosynthetica. Volume 54. DOI:10.1007/s11099-015-0164-8
  • MARTEL A. B. AND QADERI M. M. (2016). Light quality and quantity regulate aerobic methane emissions from plants. Physiol Plantarum. DOI: 10.1111/ppl.12514
  • MISHRA R. K. KUMAR J., SRIVASTAVA P. K., ET AL. (2016). PSII photochemistry, oxidative damage and anti-oxidative enzymes in arsenate-stressed Oryza sativa L. seedlings. Volume 33. DOI: 10.1080/02757540.2016.1265516
  • NAUŠ J., ŠMECKO S. AND ŠPUNDOVÁ M. (2016). Chloroplast avoidance movement as a sensitive indicator of relative water content during leaf desiccation in the dark. Photosynthesis Research. Volume 129, Issue 2, Pages 217–225. DOI: 10.1007/s11120-016-0291-5
  • OYIGA B. C., SHARMA R. C., SHEN J., (2016). Identification and Characterization of Salt Tolerance of Wheat Germplasm Using a Multivariable Screening Approach. J Agro Crop Sci, 202: 472–485. DOI: 10.1111/jac.12178
  • PANEQUE M, DE LA ROSA J. M., FRANCO-NAVARRO J. D., ET AL. (2016). Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions, CATENA, Volume 147. DOI: 10.1016/j.catena.2016.07.037
  • PEDRANZANI H., RODRÍGUEZ-RIVERA M., GUTIÉRREZ M. ET AL. (2016). Arbuscular mycorrhizal symbiosis regulates physiology and performance of Digitaria eriantha plants subjected to abiotic stresses by modulating antioxidant and jasmonate levels. Mycorrhiza. Volume 26, Issue 2, Pages 141–152. DOI: 10.1007/s00572-015-0653-4
  • PTUSHENKO V. V. AND SOLOVCHENKO A. E. (2016). Tolerance of the photosynthetic apparatus to acidification of the growth medium as a possible determinant of CO2-tolerance of the symbiotic microalga DESMODESMUS sp. IPPAS-2014. Biochemistry Moscow. Volume 81. DOI:10.1134/S0006297916120142
  • RUIZ-LOZANO J. M., AROCA R., ZAMARREÑO Á. M. ET AL. (2016. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell and Environment. Volume 39, Pages 441–452. DOI: 10.1111/pce.12631
  • WATANABE T., ORIKASA T, SHONO H. ET AL. (2016). The influence of inhibit avoid water defect responses by heat pretreatment on hot air drying rate of spinach, Journal of Food Engineering, Volume 168. DOI: 10.1016/j.jfoodeng.2015.07.014
  • SOLOVCHENKO A.,GORELOVA O., SELYAKH I., ET AL. (2016). Nitrogen availability modulates CO2 tolerance in a symbiotic chlorophyte. Algal Research. 2016. 16. 177-188. DOI 10.1016/j.algal.2016.03.002
  • TIMM C. M., PELLETIER D. A., JAWDY S. S. ET AL. (2016.) Two Poplar-Associated Bacterial Isolates Induce Additive Favorable Responses in a Constructed Plant-Microbiome System. Frontiers in Plant Science. Volume 7. DOI: 10.3389/fpls.2016.00497
  • WATANABE T., ORIKASA T, SHONO H. ET AL. (2016). The influence of inhibit avoid water defect responses by heat pretreatment on hot air drying rate of spinach, Journal of Food Engineering, Volume 168. DOI: 10.1016/j.jfoodeng.2015.07.014
  • WEI J., YANG H., CAO H. AND TAN T. (2016) Using polyaspartic acid hydro-gel as water retaining agent and its effect on plants under drought stress. Saudi Journal of Biological Sciences. Volume 23, Pages 654–659. DOI: 10.1016/j.sjbs.2015.08.016
  • ZANDALINAS S. I., RIVERO R. M., MARTÍNEZ V., ET AL. (2016). Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels. BMC Plant BiologyBMC.Volume 16. DOI: 10.1186/s12870-016-0791-7
  • ZARCO-TEJADA P.J., GONZÁLEZ-DUGO M.V. AND FERERES E. (2016). Seasonal stability of chlorophyll fluorescence quantified from airborne hyperspectral imagery as an indicator of net photosynthesis in the context of precision agriculture. Remote Sensing of Environment. Volume 179. Pages 89–103. DOI: 10.1016/j.rse.2016.03.024
  • ANDERSON L. G., DUNN A. M. , ROSEWARNE P. J. AND STEBBING P. D. (2015). Invaders in hot water: a simple decontamination method to prevent the accidental spread of aquatic invasive non-native species. Biological Invasions. Volume 17, Issue 8, Pages 2287–2297. DOI: 10.1007/s10530-015-0875-6
  • ARMADA E., BAREA J.M., CASTILLO P. ET AL. (2015). Characterization and management of autochthonous bacterial strains from semiarid soils of Spain and their interactions with fermented agrowastes to improve drought tolerance in native shrub species. Applied Soil Ecology. Volume 96, Pages 306–318. DOI: 10.1016/j.apsoil.2015.08.008
  • ARMADA E., AZCÓN R., LÓPEZ-CASTILLO O. M. ET AL. (2015). Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiology and Biochemistry. Volume 90, Pages 64–74. DOI: 10.1016/j.plaphy.2015.03.004
  • BARTÁK M., TRNKOVÁ K., HANSEN E. S. ET AL. (2015). Effect of dehydration on spectral reflectance and photosynthetic efficiency in Umbilicaria arctica and U. hyperborean. Biologia Plantarum. Volume 59, Issue 2, Pages 357–365. DOI: 10.1007/s10535-015-0506-1
  • BÁRZANA G., AROCA R. AND RUIZ-LOZANO J. M. (2015). Localized and non-localized effects of arbuscular mycorrhizal symbiosis on accumulation of osmolytes and aquaporins and on antioxidant systems in maize plants subjected to total or partial root drying. Plant, Cell and Environment. Volume 38, Issue 8, Pages 1613–1627. DOI: 10.1111/pce.12507
  • DUARTE B., GOESSLING J.W., MARQUES J.C. AND CAÇADOR I. (2015) Ecophysiological constraints of Aster tripolium under extreme thermal events impacts: Merging biophysical, biochemical and genetic insights. Plant Physiology and Biochemistry. Volume 97, Pages 217–228. DOI: 10.1016/j.plaphy.2015.10.015
  • KHALID A., ATHAR H., ZAFAR Z. U. ET AL. (2015). Photosynthetic capacity of canola (Brassica napus L.) plants as affected by glycinebetaine under salt stress. Journal of Applied Botany and Food Quality. Volume 88, Pages 78- 86. DOI:10.5073/JABFQ.2015.088.011
  • JIMÉNEZ J. D. L. C., CARDOSO J. A., DOMINGUEZ M. ET AL. (2015). Morpho-anatomical traits of root and non-enzymatic antioxidant system of leaf tissue contribute to waterlogging tolerance in Brachiaria grasses. Grassland Science. Volume 61, Pages 243–252. DOI:10.1111/grs.12095
  • MARQUEZ-GARCIA B., SHAW D., COOPER J. W. ET AL. (2015). Redox markers for drought-induced nodule senescence, a process occurring after drought-induced senescence of the lowest leaves in soybean (Glycine max). Annals of Botany. Volume 116, Pages 497–510. DOI: 10.1093/aob/mcv030
  • DYAKOV M.Y., INSAROVA I.D., KHARABADZE, D.E., PTUSHENKO V. V., and SHTAER, O. V. (2015). Influence of extreme ambient temperatures and anaerobic conditions on Peltigera aphthosa (L.) Willd. viability. Life sciences in space research 7: pp. 66-72, doi:10.1016/j.lssr.2015.10.002
  • KOSOVÁ K., VÍTÁMVÁS P., HLAVÁČKOVÁ I. ET AL. (2015). Responses of two barley cultivars differing in their salt tolerance to moderate and high salinities and subsequent recovery. Biologia Plantarum. Volume 59, Pages 106-114. DOI: 10.1007/s10535-014-0465-y
  • SOLOVCHENKO A., GORELOVA O., SELYAKH I., ET AL. (2015). A novel CO2-tolerant symbiotic Desmodesmus (Chlorophyceae, Desmodesmaceae): acclimation to and performance at a high carbon dioxide level. Algal Research. Volume 11. DOI 10.1016/j.algal.2015.04.011
  • PTUSHENKO V. V., AVERCHEVA O. V., BASSARSKAYA E. M., BERKOVICH Y. A., EROKHIN, A. N., SMOLYANINA S. O., and ZHIGALOVA, T. V. (2015). Possible reasons of a decline in growth of Chinese cabbage under a combined narrowband red and blue light in comparison with illumination by high-pressure sodium lamp. Scientia Horticulturae, 194: pp. 267-277, doi:10.1016/j.scienta.2015.08.021
  • OREKHOV D.I., V., YAKOVLEVA S. N., GORYACHEV F. F., PROTOPOPOV F.F., and ALEKSEEV, A.A. (2015). The use of parameters of Chlorophyll a fluorescence induction to evaluate the state of plants under anthropogenic load. Biophysics, 2015, Vol. 60, No. 2, pp. 263–268, doi: 10.1134/S0006350915020128
  • FESENKO I. A., ARAPIDI G. P., SKRIPNIKOV A. Y., ET AL. (2015). Specific pools of endogenous peptides are present in gametophore, protonema, and protoplast cells of the moss Physcomitrella patens. Pesticide Biochemistry and Physiology. Volume 15, Pages 1-16. DOI 10.1186/s12870-015-0468-7
  • HUMPLÍK J. F., LAZÁR D., FÜRST T. ET AL. (2015). Automated integrative high-throughput phenotyping of plant shoots: a case study of the cold-tolerance of pea (Pisum sativumL.). Plant Methods. Volume 11, Pages 1-11. DOI 10.1186/s13007-015-0063-9
  • TRIPATHI D. K., SINGH V. P., PRASAD S. M. ET AL. (2015). Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicology and Environmental Safety, Volume 113, Pages 133-144. DOI:10.1016/j.ecoenv.2014.09.029
  • WU X., TANG Y., LI C. ET AL. (2015.) Chlorophyll Fluorescence and Yield Responses of Winter Wheat to Waterlogging at Different Growth Stages. Plant Production Science. Volume 18, Issue 3. DOI: 10.1626/pps.18.284
  • ZMIENKO A., GORALSKI M., SAMELAK-CZAJKA A. ET AL. (2015). Time course transcriptional profiling of senescing barley leaves. Genomics Data. Volume 4, Pages 78–81. DOI: 10.1016/j.gdata.2015.03.0063
  • AJIGBOYE O. O., MURCHIE E., RAY R. V. (2014). Foliar application of isopyrazam and epoxiconazole improves photosystem II efficiency, biomass and yield in winter beat. Pesticide Biochemistry and Physiology. Volume 114, Pages 52–60. DOI:10.1016/j.pestbp.2014.07.003
  • CALDERÓN R., LUCENA C., TRAPERO-CASAS J. L. ET. AL. (2014). Soil temperature determines the reaction of olive cultivars to Verticillium dahliae pathotypes. PLoS One. Volume 9. DOI:10.1371/journal.pone.0110664, http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0110664
  • JUETERBOCK A., KOLLIAS S., SMOLINA I. ET AL. (2014). Thermal stress resistance of the brown alga Fucus serratusalong the North-Atlantic coast: Acclimatization potential to climate change. Marine Genomics. Volume 13, Pages 27-36. DOI:10.1016/j.margen.2013.12.008, http://www.sciencedirect.com/science/article/pii/S1874778713000871
  • PTUSHENKO V. V., PTUSHENKO O. S. AND TIKHONOV A. N. (2014) Chlorophyll Fluorescence Induction, Chlorophyll Content, and Chromaticity Characteristics of Leaves as Indicators of Photosynthetic Apparatus Senescence in Arboreous Plants. Biochemistry (Moscow). Volume 79, Issue 3, Pages 260-272. DOI: 10.1134/S0006297914030122
  • RASOOL B., KARPINSKA B., KONERT G. ET AL. (2014). Effects of light and the regulatory B-subunit composition of protein phosphatase 2A on the susceptibility of Arabidopsis thaliana to aphid (Myzus persicae) infestation. Frontiers in Plant Science. Volume 5. DOI: 10.3389/fpls.2014.00405, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4140078/
  • SOLOVCHENKO A., LUKYANOV A., SOLOVCHENKO O., ET AL. (2014). Interactive effects of salinity, high light and nitrogen starvation on fatty acid and carotenoid profiles in Nannochloropsis oceanica CCALA 804. European Journal of Lipid Science and Technology. 2014.116.5. Pages 635-644. DOI:10.1002/ejlt.201300456
  • SHTAIDA N., KHOZIN-GOLDBERG I., SOLOVCHENKO A., ET AL. (2014). Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen starved photoautotrophic Chlamydomonas reinhardtii. Journal of Experimental Botany. Volume 65. DOI: 10.1093/jxb/eru374
  • THWE A. A. AND KASEMSAP P. (2014). Quantification of OJIP Fluorescence Transient in Tomato Plants Under Acute Ozone Stress. Kasetsart Journal: Natural Science, Volume 48, Page 665 – 675.
  • AROCA R., RUIZ-LOZANO M. J., ZAMARREÑO A. M., ET AL. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. Journal of Plant Physiology, Volume 170, Issue 1, Pages 47-55. DOI:10.1016/j.jplph.2012.08.020
  • ESTRADA B., AROCA R., BAREA J. M. ET. AL. (2013). Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Science. Volume 201-202, Pages 42-51. DOI:10.1016/j.plantsci.2012.11.009, http://www.sciencedirect.com/science/article/pii/S0168945212002427
  • GAJEWSKA E., DROBIK D., WIELANEK M. ET AL. (2013). Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation. Biological Letters. Volume 50, Issue 2, Pages 65–78. DOI: 10.2478/biolet-2013-0008
  • PTUSHENKO V.V., PTUSHENKO E. A., SAMOILOVA O. P. ET AL. (2013). Chlorophyll fluorescence in the leaves of TRADESCANTIA species of different ecological groups: Induction events at different intensities of actinic light. Biosystems. Volume 114, Issue 2, Pages 85–97. DOI:10.1016/j.biosystems.2013.08.001
  • SHAKHATREH Y., CARVALHO P., FOULKES J. ET AL. (2013). ACLIMAS annual meeting – Rabat, 23 October 2013. http://www.aclimas.eu/Reports-Document/ACLIMAS%20SWIM-DP%202nd%20Annual%20Meeting,%20Rabat,%2023-24%20October%202013/ACLIMAS,%20Jordan%20achievements%20and%20future%20plans.pdf
  • SOLOVCHENKO A., SOLOVCHENKO O., KHOZIN-GOLDBERG I., ET AL. (2013). Probing the effects of high-light stress on pigment and lipid metabolism in nitrogen-starving microalgae by measuring chlorophyll fluorescence transients: Studies with a Δ5 desaturase mutant of Parietochloris incisa (Chlorophyta, Trebouxiophyceae). Algal Research. Volume 2. Volume 170, Pages 242-250. DOI 10.1016/j.algal.2013.01.01
  • VREDENBERG W. AND PAVLOVIČ A. (2012). Chlorophyll a fluorescence induction (Kautsky curve) in a Venus flytrap (Dionaea muscipula) leaf after mechanical trigger hair irritation. Journal of Plant Physiology. Volume 170, Pages 242-250. DOI:10.1016/j.jplph.2012.09.009
  • KLEM K., AČ A., HOLUB P. ET AL. (2012). Interactive effects of PAR and UV radiation on the physiology, morphology and leaf optical properties of two barley varieties. Environmental and Experimental Botany. Volume 75, Pages 52-64. DOI:10.1016/j.envexpbot.2011.08.008, http://www.sciencedirect.com/science/article/pii/S0098847211001900
  • CHYTYK, C. J., HUCL, P. J. AND GRAY, G. R. (2011). Leaf photosynthetic properties and biomass accumulation of selected western Canadian spring wheat cultivars. Canadian Journal of Plant of Science. Volume 91, Pages 305-314. DOI: 10.4141/CJPS09163
  • COWLEY R. AND LUCKETT D. (2011) Chlorophyll fluorescence as a method to detect moisture-limiting stress in canola. 17thAustralian Research Assembly on Brassicas (ARAB)
  • KOCUREK V., VONDRA M. AND SMUTNÝ, V. (2011). Efficacy of reduced doses of bentazone assessed by instruments based on measurement of chlorophyll fluorescence. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis. Volume 59, Pages 137-144. DOI: 10.11118/actaun201159010137
  • KUVYKIN V., PTUSHENKO V. V., VERSHUBSKII A. V. ET AL. (2011).Regulation of electron transport in C3 plant chloroplasts in situ and in silico: Short-term effects of atmospheric CO2 and O2. Biochimica et Biophysica Acta (BBA) - Bioenergetics, Volume 1807, Issue 3, Pages 336-347. DOI:10.1016/j.bbabio.2010.12.012
  • LUCIŃSKI R., MISZTAL L. SAMARDAKIEWICZ S. ET AL. (2011). The thylakoid protease Deg2 is involved in stress-related degradation of the photosystem II light-harvesting protein Lhcb6 inArabidopsis thaliana New Phytologist. Volume 192, Pages 74-86. DOI: 10.1111/j.1469-8137.2011.03782.x.
  • RUÍZ-SÁNCHEZ, M., ARMADA, E., MUÑOZ, Y., ET AL. (2011). Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of Plant Physiology. Volume 168, Issue 10, Pages 1031-1037. DOI:10.1016/j.jplph.2010.12.019
  • SAMOILOVA O. P., PTUSHENKO V. V., KUVYKIN V. ET AL. (2011) Effects of light environment on the induction of chlorophyll fluorescence in leaves: A comparative study of Tradescantia species of different ecotypes. Biosystems. Volume 105, Issue 1, Pages 41–48. DOI:10.1016/j.biosystems.2011.03.003
  • CESSNA S., DEMMIG-ADAMS B. AND ADAMS III W. W. (2010). Exploring Photosynthesis and Plant Stress Using Inexpensive Chlorophyll Fluorometers. Journal of Natural Resources and Life Sciences Education. Volume 39, Pages 22-30. DOI: 10.4195/jnrlse.2009.0024u
  • FERNANDEZ-MARIN B., BECERRIL J. M. AND GARCIA PLAZAOLA J. I. (2010). Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: A case study in Lobaria pulmonaria. Planta. Volume 231, Pages 1335-1342. DOI: 10.1007/s00425-010-1129-6
  • PAVLOVIČ A., SLOVÁKOVÁ L., PANDOLFI C. ET AL. (2010). On the mechanism underlying photosynthetic limitation upon trigger hair irritation in the carnivorous plant Venus flytrap (Dionaea muscipula Ellis). Journal of Experimental Botany, Volume 62, Pages 1991–2000. DOI: 10.1093/jxb/erq404
  • RUIZ-SÁNCHEZ M., AROCA R., MUÑOZ Y., ET AL. (2010). The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. Journal of Plant Physiology. Volume 167, Pages 862-869. DOI: 10.1016/j.jplph.2010.01.018
  • HARDING S. A., JARVIE M. M., LINDROTH R. L. ET AL. (2009). A comparative analysis of phenylpropanoid metabolism, N utilization, and carbon partitioning in fast- and slow-growing POPULUS hybrid clones. Journal of Experimental Botany. Volume 60, Pages 3443-3452. DOI:10.1093/jxb/erp180
  • KUVYKIN I.V., VERSHUBSKII A.V., PRIKLONSKII V.I. ET AL. (2009). Computer simulation study of pH-dependent regulation of electron transport in chloroplasts. Biophysics. Volume 54, Pages 455-464. DOI: 10.1134/S0006350909040101
  • MACEK P., MACKOVÁ J. AND DE BELLO F., (2009). Morphological and ecophysiological traits shaping altitudinal distribution of three Polylepis treeline species in the dry tropical Andes. Acta Oecologica, Volume 35, Pages 778–785. DOI:10.1016/j.actao.2009.08.013
  • ROSESCU M. R. AND ANDREI M. (2009). The study of photosystem II efficiency on selected synanthrophic plant species. Annals Food Science and Technology. Volume 10, Pages 115-119.
  • BARTÁK, M (2008) Biophysical Methods and Approaches to Monitor In-situ Lichen Responses to Environmental Extremes. Coordination Action for Research Activities on life in Extreme Environments. Publication 2.
  • KLEM K. AND BAJEROVA, E., (2008). Adjustment of herbicide dose in sugar beet based on non-invasive chlorophyll fluorescence measurements. Agricultural And Biosystems Engineering For A Sustainable World: National Conference On Agricultural Engineering, Hersonissos, Crete, Greece, Pages 23-25.
  • WOO N. S., BADGER M. R. AND POGSON B. J. (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence Plant Methods, Volume 4, Issue 27, Pages 1-14. DOI:10.1186/1746-4811-4-27


FluorPen Versions

FluorPen FP 110/S
Handheld fluorometer with integrated GPS module, USB/Bluetooth communication and dedicated software. Measured parameters: Ft, QY, OJIP, NPQ, LC. The “S“ version uses firmly attached leaf-clip.

FluorPen FP 110/D
Handheld fluorometer with integrated GPS module, USB/Bluetooth communication and dedicated software.. Measured parameters: Ft, QY, OJIP, NPQ, LC. The “D“ version is intended for use with detachable leaf-clips (clips are sold separately).

FluorPen FP 110/X
Handheld fluorometer with integrated GPS module, USB/Bluetooth communication and dedicated software.. Measured parameters: Ft, QY, OJIP, NPQ, LC. The “X“ version is mounted with custom-made leaf-clip.

Optional Features and Accessories

Detachable Leaf-Clips
Supplementary detachable leaf-clips for use with the FluorPen FP 100-MAX-D. 10-piece set.

Small, portable notebook (type according to current availability on the market).

Substitute USB Communication Cable
Substitute USB cable allowing connection between the "pen" devices and a PC (the device is delivered with one USB cable, which is included in the device price).

Self-Adhesive Rubber Pads
One set includes 10 solid pads (to be attached to the clip) and 10 pads with an opening (to be attached at the optical head).


OS: Windows 2000 / Windows XP / Windows 7 (32bit, 64bit) / Windows 8 (32 bit, 64bit)/ Windows 10 (32 bit, 64bit),
Language: English
Size: 17.3 MB

SpectraPen Installer for SpectraPen, PolyPen and PolyPen-Aqua
OS: Windows 7 (32bit, 64bit) and higher
Language: English
Size: 1.1 MB

Pen USB Driver for FluorPen, Par-FluorPen, PlantPen, AquaPen, N-Pen
OS: Windows
Language: English
Size: 2.3 MB

FluorPen/Monitoring Pen Manual
Type: PDF
Language: English
Size: 5.3 MB

FluorPen - List of References
Type: PDF
Language: English
Size: 904 KB

FluorPen Explain
Type: PDF
Language: English
Size: 2.8 MB

SpectraPen SP 100 Manual
Type: PDF
Language: English
Size: 1.4 MB

SpectraPen SP 100 - List of References
Type: PDF
Language: English
Size: 131 KB

SpectraPen LM 500 Manual
Type: PDF
Language: English
Size: 2.9 MB

PolyPen Manual
Type: PDF
Language: English
Size: 3.1 MB

PolyPen - List of References
Type: PDF
Language: English

AquaPen Manual
Type: PDF
Language: English
Size: 4.1 MB

AquaPen Manual (Czech)
Type: PDF
Language: English
Size: 4.0 MB

AquaPen - List of References
Type: PDF
Language: Czech
Size: 1.1 MB

LaiPen Manual
Type: PDF
Language: English
Size: 2.0 MB

LaiPen - List of References
Type: PDF
Language: English
Size: 135 KB

N-Pen Brief Guide
Type: PDF
Language: English
Size: 104 KB

N-Pen - List of References
Type: PDF
Language: English

PlantPen NDVI-PRI Operation Manual
Type: PDF
Language: English
Size: 2.7 MB

PlantPen - List of References
Type: PDF
Language: English
Size: 181 KB

FluorPen Teaching Material

Kindly provided by Chris Chastain from the Minnesota State University in Moorhead.

FluorPen Explain (PDF file, 2,9 MB)

Other Pocket-Sized-Instruments

FluorPen FP 100

FluorPen is a hand-held fluorometer that measures chlorophyll fluorescence parameters in a fully automated and rapid manner.
- Photosynthesis Research & Education
- Large plant screening programs
- Agriculture & Forestry
- Biotechnology

PAR-FluorPen FP 100-MAX-LM

PAR-FluorPen is used to measure fluorescence and Photosynthetic Photon Flux Density (PPFD) of photosynthetically active radiation (PAR).
- Photosynthesis Research & Education
- Plant & Molecular Biology
- Agriculture & Forestry
- Biotechnology

Monitoring Pen MP 100

Monitoring Pen is a robust and weather-proof version of the popular FluorPen that is intended for unattended use in a field.
- Photosynthesis Research & Education
- Long-Term, Autonomous Fluorometry Experiments

AquaPen-C AP-C 100

AquaPen-C is a new cuvette version of the popular FluorPen fluorometer. It is optimized for measuring chlorophyll fluorescence in green algae and cyanobacteria. AquaPen sensitivity 500 ng Chl/l enables measuring in natural water.
- Photosynthesis Research & Education
- Biotechnology
- Limnology & Oceanography

AquaPen-P AP-P 100

AquaPen-P is equipped with a submersible optical probe. It suits investigations in algal suspensions and natural waters. AquaPen sensitivity: 500 ng Chl/l.
- Photosynthesis Research & Education
- Phycology
- Limnology & Oceanography
- Biotechnology

SpectraPen LM 500

SpectraPen with precise radiometric calibration and integrated cosine corrector. Number of formulas and calculated parameters: PAR, Watt, Lux, Lumen, CIE color coordinates, color rendering indexes, color temperatures.
- Light Characteristics Measurements
- Light Source Testing and Quality Control
- Color Measurement

SpectraPen SP 100

SpectraPen is a handheld, programmable spectrophotometer that provides instant readings and spectral lines on interactive touch screen.
- Visible Light Source Testing
- Color Measurement
- Chemical Measurement

PolyPen RP 400

PolyPen RP 400 is a complete system for measurement of spectral reflectance on flat leaves as well as measurements of transmittance and absorbance of any external light source. Integrated software is capable of automatic calculation of all common vegetation indices.

PlantPen PRI 200 & NDVI 300

PlantPen is a low-cost, handheld device that characterizes plants by means of reflectance. The two standard versions measure PRI and NDVI.
- Photosynthesis Research & Education
- Vegetation Productivity
- Vegetation Stress Studies
- Agriculture

N-Pen N 100

N-Pen is a light-weight, battery-powered instrument that provides quick measurement of actual nitrogen content in plants throughout their growing season.
- Significant Yield Increase
- Quick Tuning of Nitrogen Management in Crops
- Saving Nitrogen Application Costs

LaiPen LP 100

LaiPen is a light-weight, battery-powered device that mesures Leaf Area Index (LAI) and Photosynthetically Active Radiation (PAR). It provides fast and easily repeatable measurements with instant readouts that can be exported to a PC for further processing.
- Studies of Canopy Productivity
- Studies of Forest Dynamism
- Remote Sensing

Video Gallery