Phenotypic screening of drought stress tolerance of starch related mutants in Arabidopsis thaliana by using Chlorophyll Fluorescence Imaging in Plantscreen system

Sharmila Madhavan1, Klara Simkova1, Daniel Horrer2, Diana Santelia2 and Martin Trtilek1
1 Photon Systems Instruments spol s.r.o. Drasov, Czech Republic
2 Universität Zurich, Molecular Plant Physiology, Zurich, Switzerland

Aim:
The aim of the study is to screen the starch related mutants for progressive drought stress tolerance by means of high throughput kinetic Chlorophyll Fluorescence Imaging and RGB imaging.

Background:
Starch is a major carbohydrate storage molecule and a major product of photosynthesis in the leaves of plants. Starch synthesis occurs during the day in chloroplast and collapse in the night. The α-amylase (BAM) is a major enzyme involved in starch degradation producing maltose from Glucans. Besides the normal pathway of starch degradation, an alternative stress-induced pathway has been proposed. Such pathway includes enzymes BAM1 (β-amylase 1),AMY3 (α-amylase 3) and PG M1 (phosphoglucomutase 1) and might be activated in response to drought stress resulting in starch degradation. Such a pathway would enable the degradation of starch in the leaf, providing metabolites and osmo-protectants leading to an increased drought stress tolerance. In this study, we have used the high-throughput phenotyping platform, the PlantScreen System developed in Photon System Instruments, s.r.o. for drought stress tolerance screening in various starch related mutants.

Methods:

- Quenching Kinetics measures and calculates set of photosynthetic parameters which is used to study the photosynthetic apparatus
- Analyzed parameters are: Fo, Fm, Fv, Fo’, Fm’, Ft, F1, Fp1, Fp2
- Calculated parameters are:
 1. Fv/Fm(maximum Quantum yield) = (Fm-Fo)/Fm
 2. Dryf_4 (Drying factor_4) = Fp1/F0

Results:

<table>
<thead>
<tr>
<th>Starch Mutant</th>
<th>Fo</th>
<th>Fm</th>
<th>F0</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>col-0</td>
<td>0.75</td>
<td>0.85</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>pgm-1</td>
<td>0.8</td>
<td>0.9</td>
<td>0.7</td>
<td>0.8</td>
</tr>
</tbody>
</table>

- From Fv/Fm, no difference was observed between wild type and starch mutants and also between watered and non-watered plants

- An observed significant difference between col-0 and pgm-1, which suggests pgm-1 might be resistant to drought stress, but not bam-1 and amy-3

- Also, the early stress response was observed on day 5 after drought stress initiation

- Dryf_4 detect early stress response and also allows to discriminate between drought stress resistant and drought stress sensitive

- Visual images of watered and non-watered col-0, bam-1 and amy-3 plants during progressive drought stress treatment:

- Images of drought stress col-0 and pgm-1 plants on day 13:
 - pgm-1 showed higher survival rate compared with col-0 and other mutants

Conclusion:

- Under progressive drought stress condition, pgm-1 mutant showed higher survival rate than bam-1 and amy-3 and this seems to correlate with fluorescence kinetics data.
- This results suggests pgm-1 mutant has enhanced capacity to withstand water deprivation than other starch mutants.

Reference:

Contact: sharmila.madhavan712@gmail.com
Acknowledgement: I would like to acknowledge HARVEST(research programme of European union) for the financial support for our research